## Exercise 25

Prove the statement using the precise definition of a limit.

$$
\lim _{x \rightarrow 2}(14-5 x)=4
$$

## Solution

Proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-2|<\delta \quad \text { then } \quad|(14-5 x)-4|<\varepsilon
$$

for all positive $\varepsilon$. Start by working backwards, looking for a number $\delta$ that's greater than $|x-2|$.

$$
\begin{gathered}
|(14-5 x)-4|<\varepsilon \\
|10-5 x|<\varepsilon \\
|-5(x-2)|<\varepsilon \\
5|x-2|<\varepsilon \\
|x-2|<\frac{\varepsilon}{5}
\end{gathered}
$$

Choose $\delta=\varepsilon / 5$. Now, assuming that $|x-2|<\delta$,

$$
\begin{aligned}
&|(14-5 x)-4|=|10-5 x| \\
&=|-5(x-2)| \\
&=5|x-2| \\
&<5 \delta \\
&=5\left(\frac{\varepsilon}{5}\right) \\
&=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 2}(14-5 x)=4
$$

